Policing Bot Software Development
Requirements Specification

Cody Manning
Gabriel Silva
Liam Dumbell

September, 2023

Table of Contents

B 0 T Yo A o] o 1= =Y
2.1, ProducCt PerSPECLIVE. ...ttt e e et e e ee e e e e e e e e e eeeeeeeeeeeeees
A = (o Yo [V S =T U] g T} 101 [TR SRR

KR = Yo U | 2SR
3.3.3 Maintenance and SUPPOM..........ooiiiii i

1. Introduction

1.1 Purpose:

The purpose of this document is to accurately outline and specify the various
requirements we believe our proposed framework will satisfy once fully developed.
Additionally, this document will serve as a written agreement between the developers
and the client Dr. Shloub as to what the project should aim to achieve. This document
can also be used as a general reference during the development process to ensure that
the development of the program is incrementally satisfying the requirements listed in
this document.

1.2 Scope:

The core goal of this project is to deliver a framework to our client that directly
interacts with the social media platform Twitter through the use of “Police Bots” that can
be controlled using Python code. This framework will firstly be able to detect bot
accounts on Twitter with a high degree of accuracy by collecting, compiling and then
analyzing account information on accounts thought to have the possibility of being
controlled by a bot. This process will also categorize bots based on their apparent
purpose on Twitter. Secondly, this framework will be able to distinguish between what
we define as a “malicious bot” and a “beneficial bot” by analyzing the account data and
what categories the bot accounts fall under. Lastly, this framework will be able to
accurately decide whether a malicious bot should be reported to the administrative
authorities at Twitter and recommend that the client should do so.

The working scope of this project involves creating a framework that creates and
deploys Police Bots on Twitter that can be controlled using Python scripts. This
framework will aim to automatically scan Twitter using these Police Bots on an
optimized schedule and compile data on accounts thought to be bots. The framework
will then “dynamically analyze” (idk if we have to define dynamic analysis) the compiled
account data and determine information on a bot account as well as a level of
maliciousness and recommend what actions should be taken by the user / client. This
will mainly be beneficial to the user base of Twitter as it will lead to a safer platform
where users are less likely to be negatively affected by a malicious bot account, but the

findings of this document will provide insight into bot accounts on other social media

platforms beyond Twitter.

1.3 Definitions, Acronyms, and Abbreviations

Term

Definition

Bot

Short for robot. In this case we refer to a
software or script that performs
automated tasks.

Beneficial Bot

A bot that performs tasks that are helpful
or productive to individuals interacting
with it E.g.: Translators, weather reports,
or meme generators

Malicious Bot/MalBot

A bot that performs tasks that are
harmful, dangerous or illegal. E.g.:
Scams, spam, or fraud.

Twitter/X

A social media platform that allows users
to post text or media and allow other
people to see it. Can be used personally
by individuals or companies to spread
information.

Tweet

Posts or replies to other people’s posts in
Twitter/X that are publicly available if
allowed by the user.

Thread

People can tweet on other peoples’
tweets and make a sequence of
connected tweets. An analogy of threads
in computer science terms would be a
tree.

Root tweet/Base tweet

The first tweet of a thread. Similar to the
root node of a tree.

Retweet

A repost of another accounts post that
appears on a user’s profile

Trend/Trending topics

Twitter/X has a defined section of the
website that enables users to see a list of

tweets or hashtags (explanation below)
that are being discussed/used by
numerous accounts in the last 24 hours.

DM/Direct Message

Messages sent privately to users.

@

Symbol used to mention other users on
Twitter. This symbol is followed by a
username to create a hyperlink to the

user’s profile and notify them. E.g.:
@taylorswift13

Called ‘Hashtag’. Is a label used to
organize and categorize content to make
it easier to discover for other users.

Dynamic Analysis

Dynamic analysis is the testing and
evaluation of an application during
runtime.

In the context of this project, Dynamic
Analysis refers to the analysis of account
data right after it is compiled.

AWS Amazon Web Service (database hosting
service)
MySQL MySQL is a type of SQL database.

GDPR General Data Protection Regulation: a
set of standards for handling user data.

API Application Programming Interface (A set of
rules and protocol that allows different

software applications to communicate to

each other.)
Tweepy Python library used to integrate with the

Twitter API

1.4 References:

1.4.1. 830-1998 - IEEE Recommended Practice for Software Requirements

Specifications: Link

https://ieeexplore.ieee.org/document/720574

1.5 Document Overview:

The remaining chapters of this document will document the functional and technical
requirements of the policing bot project, as well as any planned features or functionality.
Chapter 2 will detail the functionality of the project. Chapter 3 will describe the
requirements that the project needs in order to be accepted.

2. Functionalities

2.1. Product Perspective

Users of our framework will be able to create a Policing Bot that has the purpose
of finding possible bot accounts on Twitter and then compiling and downloading their
account data. This will be done by interacting with our framework’s GUI which will let
users deploy a Policing Bot and manage the bot through the GUI. These bots will
incrementally scan through tweets starting at a specific time each day and will report
their findings through the GUI. The framework will also allow users to view the findings
of the analysis of the account data compiled by the Police Bots as well as download
them as files. There are other products out there that allow for users to create Twitter
Bots that can do a variety of things, but we want to focus on creating Twitter bots that
detect other Twitter bots on a fixed schedule. This is what we consider the most efficient
approach to compiling data on bot accounts in terms of computing resources while
maintaining the integrity of our framework’s findings.

We intend to keep our framework self contained to the system it is running off of.
This means that the entirety of the analysis of account data is done locally. The only
area that exists outside of the local system in our framework are the deployed Police
Bots that scan Twitter on a schedule. We do not intend on making the Policing Bots
autonomous or a constantly running tool and consider those approaches to data
collection as outside the scope of our project.

In order to begin using our framework, a user would have to firstly download a
repository off of our website and subsequently run the required commands to launch the
framework on their local machine. After doing this, a user can decide to do any of the
mentioned actions and can terminate the framework and all of its processes at any time.

2.2. Product Functions

e Bot creation - The framework will allow the users to bind an account to the
program which will allow them to run our other bot detection methods and
subroutines.

e Bot scheduling - After an account has been bound to the program, the
user will be able to configure the bot to run after a trigger. Some examples
of triggers that can be used are times of the day or whenever a new
trending topic comes up.

e Bot discovery - The framework will enable the bot to read a tweet or set of
tweets and download the account data from accounts that interact with
these tweets.

e Bot distinguishing - After reading a tweet and selecting an account to
analyze, the framework will analyze the account data associated with the
chosen account and reliably predict if the account is run by a bot.

e Data storing - After a bot is detected, the framework will tag that account
and collect data to send to a database. This data will be used to further
develop our detection methods, and for further analysis of bot behavior.

3. Specific Requirements

3.1. External Interfaces:

e User Interfaces: Most of the framework will be run automatically in the
background, but the user will be able to interact with a GUI made in Python (can
change this to website/updating repo on git/paper publishing our findings/etc) that
displays the account information of identified malicious bot accounts as well as
the actions recommended by the framework based on its analysis. The user will
also be able to download the reports made by the framework and view its
findings in an application like Microsoft Excel.

e Hardware Interfaces: The framework will exclusively interact with PCs / Laptops
that have Python installed along with the required libraries.

e Software Interfaces: The framework will mainly interface with the desktop version
of the Twitter website, along with the Twitter API. The framework will also
potentially interface with a database service such as AWS or a local version of a
MySQL database. The minimum requirements to run our framework would be a
PC with Python installed.

3.2. Functional Requirements:

3.2.1 Data Collection:

e Twitter APl integration: The framework shall implement a mechanism to retrieve
Twitter data through the Twitter API, including tweets, user profiles,
follower/following relationships and other relevant account data.

e Data Storage: Store collected data in a secure and scalable database for future
analysis.

3.2.2 Data Pre-processing:

e Text Pre-processing: The framework shall implement text cleaning, tokenization,
and feature extraction techniques to process a text tweet.

e Data Labeling: The framework shall annotate data with labels (bot or not bot) for
supervised learning.

3.2.3 Bot Detection:

e Passive Detection: The framework shall scan for bots on a schedule, not in
real-time. Real-time functionality may be implemented in the future, but not on
initial launch.

e Batch Processing: The framework shall be able to analyze batches of historical
data in order to properly detect bots from past bots found.

3.2.4 Bot Distinguishing:

e Judgment: The framework shall be able to distinguish between beneficial and
malicious bots according to a predefined set of standards.

3.2.5 Bot Decision Making:

e Decide: The framework shall be able to make a decision on what to do with a
found malicious or beneficial bot. Some examples of a decision are reporting the
bot for removal from the Twitter website, or to simply record it and monitor it for
future analysis.

3.2.6 User Interface:

e Dashboard: The framework shall display a user-friendly dashboard to visualize
bot detection results and insights, to schedule new scans or manually send out
scans.

3.2.7 Export Findings:

e Download: The GUI for the framework will have the option to download the
current findings as a Microsoft Excel spreadsheet file which will contain the
relevant account data on all bot accounts and the framework’s findings in an
organized way.

3.3. Non-functional Requirements:

3.3.1 Performance

e Scalability: The framework shall be able to handle a large volume of Twitter data
and users.

e Response Time: The framework shall be able to provide quick responses to
account activity.

e Accuracy: The framework's accuracy in bot detection shall meet a predefined
standard, aiming for a minimum of 80% accuracy.

3.3.2 Security

e Data Privacy: The framework shall ensure user data privacy compliance with
relevant regulations (GDPR).

3.3.3 Maintenance and Support

e Documentation: Maintain comprehensive documentation for setup, usage, and
troubleshooting.

e Regular Updates: The program shall be updated regularly with the ever changing
Twitter API, or general changes to the architecture of the Twitter website.

